Omega 3

Omega 3 and 6 support the immune system and the prostate.
Eat oily fish for omega 3 – salmon, sardines, mackerel

Jan 272017
 

7 PROVEN WAYS TO LOSE WEIGHT WITH ADRENAL FATIGUE

 

 

More  on meals for weigh loss… ·∙
Each meal should include 1-­‐2 potions of lean protein. ·∙
Eat all the low-­‐glycemic veggies you want, at least 6 servings a day

Low Glycemic Veggies (organic):
Artichokes
Asparagus
Beans & Legumes
Broccoli
Brussels sprouts
Cauliflower
Celery
Cucumbers
Eggplants
Green Beans
Green Peppers
Lettuce
Mushrooms
Spinach
Tomatoes
Zucchini

Higher Glycemic Veggies (Try to limit):
Beets
Carrots
Celery Root
Corn
Parsnips
Peas
Red potatoes
Rutabaga
Sweet potatoes
Turnips
White potatoes
Winter squash
Yams
If you have a thyroid problem and  have read/heard that cruciferous vegetables like
broccoli, kale, cabbage, rutabaga, and cauliflower are bad because they are goitergenic (ie. they will cause an enlargement)”  theres no need to worry about if your organs are working! (stomach, liver, pancreas, adrenals, etc.)
That is WHY you HAVE to be HEALTHY TO LOSE WEIGHT!
Cruciferous vegetables are very high in phytonutrients! They eliminate toxins from the body by providing enzymes to help your liver!

 

Low Glycemic Fruits: (The best are berries and any fruit with a pit)
Apples
Apricots
Blackberries
Blueberries
Cantaloupes
Cherries
Grapefruits
Nectarines
Peaches
Plums
Raspberries
Strawberries

Higher Glycemic Fruits (Try to limit/avoid):
Bananas
Clementines
Grapes
Honeydew
Oranges
Papayas
Pineapples
Raisins
Tangerines
Watermelon
Dates, dried fruits
Juicing is a NO-­‐NO when attempting to lose weight! You NEED the fiber!!!!

A small serving of good fat with each meal and snack (Coconut oil is the best!!!)
Eat 1-­‐2 snacks per day if needed BUT
Don’t eat after 8pm ·∙
Drink 48-­‐64 oz of water minimum each day ·∙
Have a minimum of 25 grams of fiber a day!

Good Fats:
Coconut oil
Avocados
Raw Nuts & seeds
Olives/Olive Oil
Peanuts/Oil
Peanut Butter
Almonds
Fish (omega-­‐3…salmon, tuna, etc)
Flaxseed

 

Eat spicy foods,
drink more water,
snack on nuts and seeds,
eat a big breakfast,
eat three meals/day,
eat a lighter dinner,
eat slowly and chew thoroughly,
eliminate  MSG/Modified Food Starch/Natural Flavorings.

Jan 272017
 

The two major classes of polyunsaturated fatty acids (PUFAs) are the omega-3 and omega-6 fatty acids. Like all fatty acids, PUFAs consist of long chains of carbon atoms with a carboxyl group at one end of the chain and a methyl group at the other. PUFAs are distinguished from saturated and monounsaturated fatty acids by the presence of two or more double bonds between carbons within the fatty acid chain.

Omega-3 fatty acids (omega-3s) have a carbon–carbon double bond located three carbons from the methyl end of the chain. Omega-3s, sometimes referred to as “n-3s,” are present in certain foods such as flaxseed and fish, as well as dietary supplements such as fish oil. Several different omega-3s exist, but the majority of scientific research focuses on three: alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA contains 18 carbon atoms, whereas EPA and DHA are considered “long-chain” (LC) omega-3s because EPA contains 20 carbons and DHA contains 22.

The human body can only form carbon–carbon double bonds after the 9th carbon from the methyl end of a fatty acid. Therefore, ALA and linoleic acid are considered essential fatty acids, meaning that they must be obtained from the diet. ALA can be converted into EPA and then to DHA, but the conversion (which occurs primarily in the liver) is very limited, with reported rates of less than 15%. Therefore, consuming EPA and DHA directly from foods and/or dietary supplements is the only practical way to increase levels of these fatty acids in the body.

ALA is present in plant oils, such as flaxseed, soybean, and canola oils. DHA and EPA are present in fish, fish oils, and krill oils, but they are originally synthesized by microalgae, not by the fish. When fish consume phytoplankton that consumed microalgae, they accumulate the omega-3s in their tissues.

After ingestion, dietary lipids are hydrolyzed in the intestinal lumen. The hydrolysis products—monoglycerides and free fatty acids—are then incorporated into bile-salt– containing micelles and absorbed into enterocytes, largely by passive diffusion. The process is efficient, with an absorption rate of about 95%, which is similar to that of other ingested fats. Within intestinal cells, free fatty acids are primarily incorporated into chylomicrons and enter the circulation via the lymphatic system. Once in the bloodstream, lipoprotein particles circulate within the body, delivering lipids to various organs for subsequent oxidation, metabolism, or storage in adipose tissue.

Omega-3s play important roles in the body as components of the phospholipids that form the structures of cell membranes. DHA, in particular, is especially high in the retina, brain, and sperm. In addition to their structural role in cell membranes, omega-3s (along with omega-6s) provide energy for the body and are used to form eicosanoids. Eicosanoids are signaling molecules that have similar chemical structures to the fatty acids from which they are derived; they have wide-ranging functions in the body’s cardiovascular, pulmonary, immune, and endocrine systems.

The eicosanoids made from omega-6s are generally more potent mediators of inflammation, vasoconstriction, and platelet aggregation than those made from omega-3s, although there are some exceptions. Because both classes of fatty acids compete for the same desaturation enzymes, ALA is a competitive inhibitor of linoleic acid metabolism and vice versa. Similarly, EPA and DHA can compete with arachidonic acid for the synthesis of eicosanoids. Thus, higher concentrations of EPA and DHA than arachidonic acid tip the eicosanoid balance toward less inflammatory activity.

Some researchers propose that the relative intakes of omega-6s and omega-3s—the omega-6/omega-3 ratio—may have important implications for the pathogenesis of many chronic diseases, such as cardiovascular disease and cancer, but the optimal ratio has not been defined. Others have concluded that such ratios are too non-specific and are insensitive to individual fatty acid levels. Most agree that raising EPA and DHA blood levels is far more important than lowering linoleic acid or arachidonic acid levels.

Currently, most clinicians do not assess omega-3 status, but it can be done by measuring individual omega-3s in plasma or serum phospholipids and expressing them as the percentage of total phospholipid fatty acids by weight. Experts have not established normal ranges, but mean values for serum or plasma phospholipid EPA plus DHA among U.S. adults not taking omega-3 supplements are about 3%–4%. Plasma and serum fatty acid values, however, can vary substantially based on an individual’s most recent meal, so they do not reflect long-term dietary consumption.

It is also possible to assess omega-3 status via analysis of erythrocyte fatty acids, a measurement that reflects longer-term intakes over approximately the previous 120 days. The “omega-3 index” proposed by Harris and von Schacky reflects the content of EPA plus DHA in erythrocyte membranes expressed as a percentage of total erythrocyte fatty acids. This index can be used as a surrogate for assessing tissue levels of EPA plus DHA. EPA and DHA typically comprise about 3%–5% of erythrocyte fatty acids in Western populations with low fish intakes. In Japan, where fish consumption is high, erythrocyte EPA and DHA levels are about twice those of Western populations.

Recommended Intakes

The table below lists the current AIs for omega-3s in grams per day.
Human milk contains omega-3s as ALA, EPA and DHA, so the IOM established an AI for infants from birth to 12 months that is equivalent to the mean intake of omega-3s in healthy, breastfed infants.

For infants, the AIs apply to total omega-3s. For ages 1 and older, the AIs apply only to ALA because ALA is the only omega-3 that is essential. The IOM did not establish specific intake recommendations for EPA, DHA or other LC omega-3s.

Adequate Intakes (AIs) for Omega-3s
Age Male Female Pregnancy Lactation
Birth to 6 months 0.5 mg 0.5 mg
7–12 months 0.5 mg 0.5 mg
1–3 years 0.7 mg 0.7 mg
4–8 years 0.9 mg 0.9 mg
9–13 years 1.2 mg 1.0 mg
14–18 years 1.6 mg 1.1 mg 1.4 mg 1.3 mg
19-50 years 1.6 mg 1.1 mg 1.4 mg 1.3 mg
51+ years 1.6 mg 1.1 mg

Sources of Omega-3s

Food
Plant oils that contain ALA include flaxseed (linseed), soybean, and canola oils.
Chia seeds and black walnuts also contain ALA.

The omega-3 content of fish varies widely.
Cold-water fatty fish, such as salmon, mackerel, tuna, herring, and sardines, contain high amounts of LC omega-3s,
whereas fish with a lower fat content—such as bass, tilapia and cod—as well as shellfish contain lower levels.
The omega-3 content of fish also depends on the composition of the food that the fish consumes.
Farmed fish usually have higher levels of EPA and DHA than wild-caught fish, but it depends on the food they are fed. An analysis of the fatty acid composition of farm-raised Atlantic salmon from Scotland showed that the EPA and DHA content significantly decreased between 2006 and 2015 due to the replacement of traditional marine ingredients in fish feed with other ingredients.

Beef is very low in omega-3s, but beef from grass-fed cows contains somewhat higher levels of omega-3s, mainly as ALA, than that from grain-fed cows.

Some foods, such as certain brands of eggs, yogurt, juices, milk, and soy beverages, are fortified with DHA and other omega-3s.
Since 2002, manufacturers have added DHA and arachidonic acid (the two most prevalent LC PUFAs in the brain) to most infant formulas available in the United States.

Several food sources of ALA, DHA, and/or EPA are listed in the Table below.
The U.S. Food and Drug Administration (FDA) has established a Daily Value (DV) of 65 g for total fat but not for omega-3s. Thus, the Table presents the amounts of omega-3 fatty acids in grams per serving only and not the percent of the DV.

 Selected Food Sources of ALA, EPA, and DHA
Food Grams per serving
ALA DHA EPA
Flaxseed oil, 1 tbsp 7.26
Chia seeds, 1 ounce 5.06
Flaxseed, whole, 1 tbsp 2.35
Salmon, Atlantic, farmed cooked, 3 ounces 1.24 0.59
Salmon, Atlantic, wild, cooked, 3 ounces 1.22 0.35
Herring, Atlantic, cooked, 3 ounces 0.94 0.77
Canola oil, 1 tbsp 1.28
Sardines, canned in tomato sauce, drained, 3 ounces 0.74 0.45
Mackerel, Atlantic, cooked, 3 ounces 0.59 0.43
Salmon, pink, canned, drained, 3 ounces 0.04 0.63 0.28
Soybean oil, 1 tbsp 0.92
Trout, rainbow, wild, cooked, 3 ounces 0.44 0.40
Black walnuts, 1 ounce 0.76
Mayonnaise, 1 tbsp 0.74
Oysters, eastern, wild, cooked, 3 ounces 0.14 0.23 0.30
Sea bass, cooked, 3 ounces 0.47 0.18
Edamame, frozen, prepared, ½ cup 0.28
Shrimp, cooked, 3 ounces 0.12 0.12
Refried beans, canned, vegetarian, ½ cup 0.21
Lobster, cooked, 3 ounces 0.04 0.07 0.10
Tuna, light, canned in water, drained, 3 ounces 0.17 0.02
Tilapia, cooked, 3 ounces 0.04 0.11
Scallops, cooked, 3 ounces 0.09 0.06
Cod, Pacific, cooked, 3 ounces 0.10 0.04
Tuna, yellowfin, cooked 3 ounces 0.09 0.01
Kidney beans, canned ½ cup 0.10
Baked beans, canned, vegetarian, ½ cup 0.07
Ground beef, 85% lean, cooked, 3 ounces 0.04
Bread, whole wheat, 1 slice 0.04
Egg, cooked, 1 egg 0.03
Chicken, breast, roasted, 3 ounces 0.02 0.01
Milk, low-fat (1%), 1 cup 0.01

 

Jan 272017
 

Video with explanation of hypothyroidism and tips on diet to help resolve the problem.

8 minutes.

 

Diet rich in;

  • Protein
  • Iodised salt
  • Sea salt
  • Most fish
  • Fish oil
  • Sea weed / kelp
  • Eggs
  • Certain cheeses
  • Green leafy vegetables

Eat foods that contain a lot of fatty acids;

  • Almonds
  • Walnuts
  • Whole grains
  • Lean Meat
  • Milk
  • Egg Whites

Eat foods with Selenium that contain anti-oxidants, anti-aging, anti-cancer enzymes;

  • Rice
  • Corn
  • Wheat
  • Brazil Nuts
  • Walnuts
  • Onions
  • Oats
  • Garlic
  • Soybeans

Chicken, Beef and certain fish also contain Selenium so be careful not to overdose.

Eat Vitamins

  • A
  • B2
  • B3
  • B6
  • C

Eat foods that contain these vitamins including;

  • Bananas
  • Bok Choy
  • Broccoli
  • Cantaloupe
  • Carrots
  • Egg Yokes
  • Figs
  • Oranges
  • Spinach

Stay away from;

  • Sugar
  • Junk food & fast food – especially fried fast food
  • Vegetables that contain high amounts of iron – cauliflower, mustard
  • Alcohol

 

7 foods that help with Hypothyroidism

4 minutes

  1. Coconut oil – 1 teaspoon virgin coconut oil per day
  2. Ginger Tea   source of zinc, magnesium, potassium
  3. Fish – selenium, iodine, B12, Omega 3
  4. Apple Cider Vinegar – restore pH balance
  5. Nuts – for selenium – Brazil nuts, Macadamia, Hazelnuts
  6. Wild Oats – selenium, iron, zinc, manganese, fiber
  7. Black Walnut – iodine, magnesium.  Blood purifier- removes toxins from blood

The Elimination Diet
Dr. Izabella Wentz with Tom Malterre on the Elimination Diet

45 min

Jan 262017
 

Video – Natural Solutions for Thyroid Disorders

44 minutes

 

Top things to do to treat Hashimotos

4 min

Thyroid Pharmacist Izabella Wentz

  • Reduce Stress
  • Supplements for nutrient deficiencies
  • Reduce / remove Gluten
  • Careful diet – Sugar free, Grain free, Dairy free, Paleo, Low GI index
  • Supplements B12, D3, digestive enzymes, ferritin/ iron, omega 3
    Selenium 200 mcg, Betaine with pepsin, Curcumin, Zinc 30 mg, l- Glutamine
  • Lifestyle changes – relaxation, massage, sauna
  • TSH levels <1-2
  • LDN
  • Probiotics or fermented foods

The Elimination Diet
Dr. Izabella Wentz with Tom Malterre on the Elimination Diet

45 min

The most common triggers in Hashimoto’s are nutrient deficiencies, food sensitivities, intestinal permeability (leaky gut), stress, an impaired ability to get rid of toxins and in some cases, infections. Optimizing your health starts with food. Figuring out which foods nourish you, and which ones cause you harm is the single most important thing you can learn in your health journey.

I’ve found that recognizing and eliminating reactive foods can be a life-changer for most people with Hashimoto’s.

Reactive foods trigger an inflammatory response in the GI tract, leading to malabsorption of nutrients (gluten sensitivity in particular has been implicated in causing a Selenium deficiency, a well known risk factor for Hashimoto’s), and can also produce intestinal permeability whenever they are eaten.

Most people will see a dramatic reduction in gut symptoms, brain symptoms, skin breakouts and pain by eliminating the foods they are sensitive to. Some will also see a significant reduction in thyroid antibodies! An additional subset of people, will actually be able to get their Hashimoto’s into complete remission just by getting off the foods they react to, normalizing their thyroid antibodies, and some even normalizing their thyroid function!

What’s Your Hashimoto’s Hypothyroidism Root Cause?

2 min

 

Dr. Izabella Wentz Can Thyroid Issues & Hashimoto’s Disease Be Reversed Naturally?

22 min

Jan 262017
 

Mercury is highly toxic and generally accumulates in the body and has been shown to cause a variety of problems.

Eat oily fish for omega 3 – salmon, sardines, mackerel etc preferably smaller fish rather than large ones like tuna- they eat the small ones & have accumulated mercury and other heavy metals from the small ones.
Tuna, Swordfish, and Orange Roughie all contain trace amounts of mercury which accumulates over time.

For years mercury – amalgam fillings were used, these are 50% mercury with some copper and silver and those with very sensitive systems appear to react to the minute amounts of mercury that leaches out of fillings over time.

Where there are dis-similar metals in the mouth, eg mercury amalgams and nickel crown, or even braces, and with the mouth having a salt or saline solution, the two dissimilar metals in a saline solution makes a battery. Studies have shown that this “battery” in the mouth causes the mercury to leach out of the amalgam 80 times FASTER.

Fillings have a limited life – 20 -30 years- when due for replacement ensure white fillings are used.

Some people have all amalgam fillings removed, however filling removal must be done very carefully because the process of grinding out the filling can release the mercury as vapour, which can then be inhaled. There are reports of those with only minor thyroid symptoms suddenly experiencing major problems due to mercury poisoning from inhaling vapours during the filling removal process.

visit www.noamalgam.com

Mercury in Fumigants
Where possible, try to eat organic grains since mercury fumigants are commonly used in non organic premises to control pests in buildings that store grains and produce. This is yet another reason why you need to eat organic.

Mercury can be flushed from the body using a combination of herbs but is generally accumulated in the body, so over time it can grow to become a problem.

Jan 262017
 

As usual there is lots of conflicting info about but these are what I can make sense of:
In general it is best not to completely eliminate anything if you are already used to eating / drinking it. Complete elimination will most likely create cravings and often result in a replacement which may or may not be better than the original.
eg fat replaced with sugar, dairy replaced with soy, red meat replaced with soy based processed foods.
Eat foods with as little processing as possible, ie whole grains, unprocessed meats rather than processed meats like sausages, cured bacon, crab meat, chicken nuggets etc.

Eliminate as much Sugar as possible- it is hidden in so many things we eat & drink, definitely don’t add sugar eg in coffee / tea, on cereals

Cut back on Coffee,it often has lots of pesticides used in production & these remain in the beans, and the caffeine itself is a problem, it dehydrates, prevents the absorption of Iron and raises cholesterol.

Drink Ginger Tea

Minimise alcohol intake– in general it is toxic to the body, so with every drink you are adding toxins to your body and hoping that the liver can remove them all.

Cut back on dairy foods if you have dairy intolerance, but don’t cut out completely as they are valuable source of calcium. watch for sugar in yogurts etc

Eat oily fish for omega 3 – salmon, sardines, mackerel etc preferably smaller fish rather than large ones like tuna- they eat the small ones & have accumulated mercury and other heavy metals from the small ones

Red meat in moderation- unprocessed – ie not cured bacon or salt dried. good for iron and other minerals. it is a good source of iron and zinc.

Processed White Iodised Salt contains anticaking agents along with  iodine which will be extracted by thyroid. For many this will be fine, but for those with a poorly functioning thyroid, adding more iodine to the body can actually damage it – use unprocessed sea salt or pink rock salt.

Vitamin D – get from regular sunlight exposure 10 min at a time
Vitamin C from real foods – Ascorbic acid is not vitamin C
Don’t have foods that are fortified with vitamins – fillers (rock) and artificial vitamins

Selenium – many soils are known to be deficient in selenium – seek out foods that contain selenium or consider supplements.
Potatoes – can be good for selenium when baked or lightly fried from raw- not deep fried. Boiling changes the structure & loses some of goodness
Lightly brown only- all foods chips, toast etc, the browner / blacker the surface the more carcinogens may be produced from the browning process.

Bread – whole grain – lots of salt and sugar in a lot of breads.
if you have any gluten sensitivity then cut back on bread and wheat based products, replace with rice base.

Can be good to have some carbs such as slice of bread 5 hours before sleep.

When taking pills / supplements try to take capsules rather than tablets as the tablets use fillers to hold them together and the fillers can contain toxins and block up liver / kidneys.

 

Jan 262017
 

Pasture-raised animal products and wild-caught fish: as  nature intended
Several studies have been done comparing the nutrient content of pasture-raised (PR) and grain-fed (confinement animal feeding operations, or CAFO) animal products.

PR  animal products are superior to CAFO in 2 primary respects:

they have a better fatty acid profile, and

higher levels of vitamins and other micronutrients.

Grain-fed animals have lower levels of anti-inflammatory omega-3 fats like EPA and DHA.

The more grain in an animal’s diet, the lower the omega-3 levels in their meat.
For  example, grass-fed beef typically has 3 times more omega-3 than grain-fed beef.
In addition to higher levels of beneficial omega-3 fat, pasture-raised animal products also  have much higher levels of several vitamins and minerals, including:
• 288 percent more vitamin E
• 54 percent more beta-carotene
• Twice as much riboflavin (B2)
• Three times as much thiamin (B1)
• Four times as much selenium
• 30 percent more calcium
• 5 percent more magnesium

We see a similar difference between eggs from hens raised on pasture, and those raised  in confinement.
Eggs from pasture-raised hens contain as much as 10 times more  omega-3 than eggs from factory hens, and they are significantly higher in B12 and folate.  They also have higher levels of fat-soluble antioxidants like vitamin E and a denser concentration of vitamin A.

In the case of fish, farmed fish contain less omega-3 relative to linoleic acid (omega-6).
For example, wild salmon contains 10 times more omega-3 than omega-6, whereas farmed salmon has less than 4 times the amount of omega-3 than omega-6. Another study found that consuming standard farmed salmon, raised on diets high in omega-6, raises blood levels of certain inflammatory chemicals linked to increased risk of cardiovascular disease, diabetes, Alzheimer’s and cancer.

Wild salmon also contains  4 times as much vitamin D as farmed salmon, which is especially important since up to 50 percent of Americans are deficient in this important vitamin.